
Liam Tyler and Ivan De Oliveira Nunes | Rochester Institute of Technology

Compartmentalizing Untrusted Code in Bare-Metal Embedded Devices

Early ResultsUntrusted Code IsolationMicro-Controller Units (MCUs)
MCUs implement the de facto interface between the
physical and digital worlds

MCUs often perform safety- and time-critical tasks but lack
security features comparable with their overall importance

Next Steps

Resources

• Runtime configurability of UCCs
- More UCC support without additional hardware

overhead

• Shared UCC dependencies
- Reduce code duplication across UCCs to reduce

the potential memory impact of isolation

Runtime Attacks

Existing Isolation Techniques

UCCA Preprint

Some MCUs have support for isolation (Privilege levels and
Memory Protection Units) to mitigate runtime attacks

These controls isolate security-critical functionality from the
rest of the system

- Prevents malicious access to the isolated functionality

- Rest of the system remains vulnerable

- Vulnerabilities within the isolated functionality can still
result in a full system compromise

UCCA Prototype

Runtime attacks typically originate from well-known code
sections (e.g. third-party code and I/O manipulation)

There is a lack of untrusted code isolation for bare-metal
devices due to resource restrictions

Branching instructions (i.e. function calls, returns, loops,
etc.) define the control flow of a program

Runtime attacks allow an adversary to remotely hijack
these branching instructions and alter a program's intended
behavior

Untrusted Code Compartment Arch. (UCCA)
Hardware Monitor that allows for the definition and isolation
of Untrusted Code Compartments (UCCs)

UCCs are independent, arbitrarily-sized, and immutable
during runtime

UCCA Security Properties

Implemented on the OpenMSP430 core and deployed on a
Basys-3 prototyping board

UCCA requires 85 Look-Up Tables (LUTs) and 86 registers
to isolate a single UCC

Each additional UCC requires another 62 LUTs and 35
registers

UCCA security checks incur no runtime overhead

Contact: lgt2621@rit.edu

Acknowledgements

National Science Foundation
(Award SaTC-2245531)

Return Integrity prevents any malicious jumps from leaving

UCCs

Stack Integrity prevents untrusted code from tampering with

data in use by other functions on the device

• Prevents writes to Non-UCC data

• Ensures proper cleaning of the stack upon leaving a UCC

Both properties are formalized using Linear Temporal Logic

and UCCA is verified to adhere to these specifications

