
SpecCFA: Enhancing Control Flow Attestation/Auditing
via Application-Aware Sub-Path Speculation

Adam Caulfield, Liam Tyler, and Ivan De Oliveira Nunes
Rochester Institute of Technology, USA

Abstract—At the edge of modern cyber-physical systems,
Micro-Controller Units (MCUs) are responsible for safety-
critical sensing/actuation. However, MCU cost constraints rule
out the usual security mechanisms of general-purpose comput-
ers. Thus, various low-cost security architectures have been
proposed to remotely verify MCU software integrity. Control
Flow Attestation (CFA) enables a Verifier (Vrf) to remotely
assess the run-time behavior of a prover MCU (Prv), generat-
ing an authenticated trace of all of Prv control flow transfers
(CFLog). Further, Control Flow Auditing architectures aug-
ment CFA by guaranteeing the delivery of evidence to Vrf.

Unfortunately, a limitation of existing CFA lies in the cost to
store and transmit CFLog , as even simple MCU software may
generate large traces. Given these issues, prior work has pro-
posed static (context-insensitive) optimizations. However, they
do not support configurable program-specific optimizations. In
this work, we note that programs may produce unique pre-
dictable control flow sub-paths and argue that program-specific
predictability can be leveraged to dynamically optimize CFA
while retaining all security guarantees. Therefore, we propose
SpecCFA: an approach for dynamic sub-path speculation in
CFA. SpecCFA allows Vrf to securely speculate on likely control
flow sub-paths for each attested program. At run-time, when
a sub-path in CFLog matches a pre-defined speculation, the
entire sub-path is replaced by a reserved symbol. SpecCFA
can speculate on multiple variable-length control flow sub-
paths simultaneously. We implement SpecCFA atop two open-
source control flow auditing architectures: one based on a
custom hardware design [1] and one based on a commodity
Trusted Execution Environment (ARM TrustZone-M) [2]. In
both cases, SpecCFA significantly lowers storage/performance
costs that are critical to resource-constrained MCUs.

1. Introduction

Micro-Controller Units (MCUs) are part of cyber-
physical systems and implement the de-facto interface be-
tween the physical and digital worlds. Therefore, they are
relied upon to implement safety-critical sensing and actua-
tion tasks [3], [4], [5]. However, due to energy, size, and
cost constraints, MCUs lack security features common to
general-purpose computers. In particular, they usually run

To appear: The 40th Annual Computer Security Applications
Conference (ACSAC’24).

software at bare-metal, lacking Memory Management Units
(MMUs), fine-grained inter-process isolation, or strong priv-
ilege separation. Given their importance to modern systems
and lack of security features, MCUs have become attractive
targets for attacks [6], [7].

In this context, Remote Attestation (RA) [5], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31]
and Proofs of Execution (PoX) [32], [33] were proposed
as inexpensive means to detect software compromises on
MCUs. In a typical RA protocol, a Verifier (Vrf) aims to
determine if the software state of a remote Prover MCU
(Prv) is trustworthy. RA produces an authenticated and
unforgeable “snapshot” of Prv’s current software image.
PoX builds atop RA to also prove that a particular function
within this software image has been executed in a timely
manner.

On the other hand, neither RA nor PoX offers evi-
dence about the order in which instructions have been exe-
cuted. Thus, out-of-order execution attacks, including con-
trol flow hijacking [34], [35], Return-Oriented Programming
(ROP) [36], and Jump-Oriented Programming (JOP) [37],
remain oblivious to Vrf with RA and PoX.

While Control Flow Integrity (CFI) [38], [39], [40], [41],
[42], [43], [44] can detect some attacks locally at Prv,
they do not provide Vrf with evidence about the malicious
control flow path taken, precluding analysis of the anoma-
lous behavior [45]. Therefore, Control Flow Attestation
(CFA) [2], [46], [47], [48], [49], [50], [51], [52], [53], [54],
[55], [56] was proposed to provide precise evidence of the
execution’s control flow path to a remote Vrf. Until recently,
CFA was limited by the fact that a fully compromised Prv
could ignore Vrf requests or refuse to deliver a CFLog that
indicates a compromised state. This problem is recognized
and addressed in recent work [1] by incorporating reliable
delivery of CFLog as part of the CFA’s root of trust (RoT)
functionality to enable “control flow auditing” as opposed
to best-effort CFA. We revisit CFA details in Sec. 2.

Regardless of specifics, CF-Attestation/-Auditing 1 re-
quires the storage of CFLog and its eventual transmis-
sion to Vrf, which becomes a bottleneck on the resource-
constrained Prv. For this reason, earlier CFA methods [46],
[50], [53] proposed to build CFLog as a hash-chain to

1. In the remainder of this paper (unless explicitly stated) we use CFA to
refer to both Control Flow Attestation and Control Flow Auditing schemes.

ar
X

iv
:2

40
9.

18
40

3v
1 

 [
cs

.C
R

] 
 2

7 
Se

p 
20

24



compress the sequence of control flow transfers into a single
hash digest. While this approach minimizes storage/trans-
mission costs, it requires Vrf to derive the exact control
flow path that could have led to the received hash digest
(for the entire execution). The complexity of this task grows
exponentially with the number of control flow transfers,
leading to the well-known path explosion problem [57], [58].
Due to path explosion, more recent CFA approaches opt to
store CFLog verbatim [2], [47], [51], [52] or in compressed
form without loss of information [48], [49]. Consequently,
the aforementioned costs limit their applicability to small
operations [48], [47]. While simple optimizations to reduce
CFLog (such as replacing simple loops with counters [1],
[47], [53]; or storing decision bits instead of destination
addresses for simple conditional branches [48], [49]) have
been proposed, they are static. In other words, they are hard-
coded on the CFA RoT and unaware of the application being
attested in a “one size fits all” fashion.

Contrary to static approaches, our work is motivated by
two key premises: (1) Expected control flow sub-paths are
often predictable and repetitive. Therefore, with knowledge
of the attested program’s expected behavior (e.g., based on
prior execution observation), one can learn likely sub-paths
with reasonable accuracy; (2) Anomalous and malicious
CFLog-s are rare. While Vrf should still receive all control
flow information, attacks do not happen as often as benign
executions. Therefore, it should be possible to replace ex-
pected benign sub-paths with small reserved symbols to in-
dicate that an entire benign/expected sub-path has occurred
(instead of filling CFLog with redundant data). Based on
these premises, we propose SpecCFA: an approach to enable
dynamic sub-path speculation policies in CFA.

SpecCFA provides Vrf with the ability to speculate on
expected control flow transfers for the attested operation.
If speculations match an execution sub-path taken by Prv
at run-time, the entire matching sub-path is replaced by a
reserved symbol, greatly reducing CFLog size without loss
of information. SpecCFA allows simultaneous speculation
on multiple variable-sized sub-paths for a given attested
operation.

Unsurprisingly, the ability to dynamically speculate on
sub-paths also opens attack vectors that (if left unprotected)
could be exploited by an adversary (Adv) to forge/spoof
execution traces. This leads to non-trivial challenges that
must be overcome to realize SpecCFA securely. Therefore,
we also specify and implement architectural measures to
guarantee that SpecCFA retains the same security as the
underlying CFA architectures while achieving performance
gains.

We note that existing CFA is either based on Trusted
Execution Environments (TEEs) or custom hardware sup-
port. To demonstrate SpecCFA’s generality, we implement
it atop one representative of each category, namely: (1)
ACFA [1] which targets lowest-end MCUs and employs
custom hardware support; and (2) ISC-FLAT [2] which
targets “off-the-shelf” MCUs, leveraging a commodity TEE
(TrustZone for ARM Cortex-M). In the former, SpecCFA
is instantiated as a custom hardware design. In the latter,

SpecCFA is implemented within the TEE’s trusted world.
We choose these architectures due to their public availability.
Nonetheless, we believe SpecCFA’s concepts to be broadly
applicable to any CFA architecture.

Finally, we also propose and evaluate several approaches
to determine effective path speculations. We consider and
compare automated approaches based on previously ob-
served CFLog-s and static analysis, in addition to manual
analysis of expected control flow paths. In several cases,
SpecCFA leads to order-of-magnitude improvements in stor-
age, bandwidth, and communication latency while retaining
all CFA guarantees. We make SpecCFA prototype implemen-
tation publicly available at [59].

2. Background & Related Work

2.1. Remote Attestation (RA)

RA is a challenge-response protocol in which a Vrf aims
to check the software image currently installed on Prv, i.e.,
the content of Prv’s program memory (PMEM). A typical
RA protocol is performed as follows:
1) Vrf sends Prv a unique cryptographic challenge (Chal).
2) After authenticating Vrf’s request containing Chal, an

RoT in Prv computes an authenticated integrity-ensuring
function over PMEM and Chal to produce a response
(H).

3) Prv sends H to Vrf.
4) Vrf compares H to its expected value.

Step (2) can be implemented using a Message Authen-
tication Code (MAC) or digital signature. The secret key
used in this operation must be securely stored by the RoT
on Prv to ensure it is inaccessible to untrusted software.

RA architectures are usually classified into three cate-
gories: software-based, hardware-based, or hybrid, depend-
ing on how their RoT is implemented. Software-based
RA [5], [16], [19], [21], [23], [24], [25], [26] does not rely on
specialized hardware but relies on strong assumptions about
Adv and the system. Hardware-based approaches [15], [18],
[27], [28], [29] rely on support from dedicated hardware,
TPMs [60], or instruction set features [61] to achieve at-
testation with stronger security guarantees at a higher cost.
Hybrid RA schemes [9], [10], [11], [12], [30] combine hard-
ware and software to achieve security guarantees compara-
ble to hardware-based RA while minimizing the hardware
cost. Hybrid approaches perform the RA measurement in
software while protecting its execution and cryptographic
key(s) through custom hardware.

2.2. Control Flow Attestation/Auditing (CFA)

CFA [45], [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [62] augments RA to detect control flow attacks.
In addition to proving if the correct software image is in-
stalled on Prv, CFA produces an authenticated log (CFLog)
of all executed control flow transfers. Existing CFA methods
use either (1) binary instrumentation and TEE support [48],

2



[51], [52], [53]; or (2) custom hardware modifications [1],
[46], [47], [49], [50], [55] to securely create and store
CFLog. After execution, Prv’s RoT MACs/signs CFLog

along with the RA evidence to produce H . Upon receiving
CFLog and H , Vrf inspects their contents to detect control
flow attacks.

Early CFA techniques used hash-chains to return a single
hash [46], [53] (or multiple hashes [50]) of CFLog to Vrf.
To verify the execution, Vrf checks if the received hash
digest corresponds to a valid path. Although this approach
reduces CFLog to a small fixed size, it is limited in its
scalability to more complex software, as Vrf might face
path explosion when attempting to produce a complete set of
valid paths [57], [58]. Because of this, more recent CFA de-
signs produce verbatim CFLog-s that include the destination
address of each control flow transfer. Verbatim CFLog-s ease
verification, but storage and transmission of CFLog become
challenging in branch-intensive attested programs. While
one could consider standard compression algorithms (e.g.,
based on Huffman codes [63]) to reduce CFLog, these algo-
rithms are too heavy to run locally on a resource-constrained
Prv. Instead, prior work has introduced simpler strategies to
reduce CFLog. LiteHAX [49] is a hardware-based approach
that records a reduced-sized bitstream of CFLog. LiteHAX
logs a single bit for each direct jump/call and conditional
branch (1/0 if the branch was/was not taken, respectively).
As indirect branches can have multiple destinations, their
full address is recorded in the bitstream. OAT [48] records
branch destinations in a similar manner to LiteHAX and
reduces the bitstream size further by producing a hash-chain
of return addresses instead of adding them to the bitstream.
ARI [54] follows the same logging scheme as OAT while
only recording the control flow transfers that enter, exit, or
occur within user-defined mission-critical components.

An alternative approach to encoding the CFLog as a
bitstream is to continuously transmit a series of reduced-
sized CFLog-s (slices) to Vrf. ScaRR [51] provides CFA
with CFLog slicing for complex systems such as cloud-
based virtual machines. ACFA [1] is a hardware-software
co-design for low-end MCUs that uses custom hardware to
actively interrupt execution to transmit fixed-sized CFLog

slices. ACFA is the first technique to enable control flow
auditing by incorporating reliable evidence delivery as part
of its RoT.

To our knowledge, no prior works consider the speci-
ficity of each software being attested to reduce CFLog

size. For example, while utilizing loop counters is generally
applicable, it offers little optimization to programs with few
or complex loops. Similarly, this generality may miss out
on unique program behaviors that offer better reductions.
Our work bridges this gap by enabling secure and config-
urable program-specific speculations that lead to significant
performance improvements in CFA.

3. SpecCFA at a High-Level

As part of a CFA request, SpecCFA allows Vrf to specify
which control flow sub-paths are expected to occur the most

during the execution of the attested program. Upon receiving
an authenticated request from Vrf (along with the specified
sub-paths), SpecCFA RoT saves the Vrf-defined paths to
protected memory and starts the attested execution of the
requested program. As the program executes, the underlying
CFA architecture saves control flow transfers to CFLog.
Whenever a matching control flow sub-path is found in
CFLog, it is replaced by a short reserved symbol, indicating
one occurrence of a Vrf-specified sub-path in CFLog.

Remark 1: as Vrf is aware of the path/symbol corre-
spondence, SpecCFA does not result in any loss of informa-
tion in CFLog. Vrf can simply replace the symbols in the
received CFLog to derive the full CFLog for verification.

Fig. 1 presents a high-level example of SpecCFA’s in-
tended behavior. In this example, CFLog is being moni-
tored by SpecCFA to optimize the Vrf-specified sub-path
{A,B,D,G}. As the program executes, the underlying CFA
architecture appends data to CFLog after each control flow
transfer. When a matching instance of the sub-path appears
in CFLog (stage (a)), SpecCFA detects and replaces the
sub-path with its associated symbol: an ID equal to 1 in
this example (stage (b)). As execution continues, CFLog

continues to grow with new transfers (stage (c)) and Spec-
CFA does not modify CFLog until the next match occurs
(stage transition (d) → (e)). After the sub-path replace-
ment, execution continues and new transfers are appended
normally (stage (f)). This process continues until the end
of execution. For simplicity, this example shows an opti-
mization of a single sub-path containing only four transfers.
However, SpecCFA supports speculation of multiple sub-
paths of arbitrary length. As noted earlier, path speculations
(e.g., {A,B,D,G} in this example) are defined by Vrf
and sent to Prv along with CFA requests (recall Sec. 2).
Importantly, Vrf is not always required to send speculation
paths, but only when it decides to update a speculation
strategy.

As we demonstrate in Sec. 8, this intuitive idea re-
sults in significant performance improvements in terms of
storage, bandwidth, and latency. However, from a security
standpoint, SpecCFA’s design must overcome several non-
trivial challenges. In particular, it must ensure that the
ability to speculate on sub-paths does not lead to exploitable
attack vectors (on a Prv whose software is, by assumption,
potentially compromised). For instance, Adv could attempt
to compromise CFLog integrity by replacing illegal paths
with expected sub-path symbols. The latter can be accom-
plished by a variety of means, depending on Adv’s strategy.
Therefore, Sec. 4 and Sec. 5 detail SpecCFA design in order
to prevent any such attempt, while facilitating SpecCFA
performance gains. Then, in Sec. 6, we argue the security
of the overall constructions for the two classes of CFA
considered in this work (i.e., based on custom hardware and
TEEs).

Remark 2: While SpecCFA savings do not extend to ma-
licious or anomalous sub-paths (as Vrf would not speculate
on unknown anomalies/attacks), such instances are rare. In
these cases, SpecCFA still ensures accurate detection. Con-
versely, during Prv’s predictable and intended executions,

3



Figure 1. Example optimization made by SpecCFA

SpecCFA enhances performance.
Remark 3: SpecCFA inherits its support for inter-

rupts from the underlying CFA architecture. Some CFA
schemes [2] allow but do not record external interrupts to
CFLog. As such, interrupts do not affect SpecCFA sub-path
speculations. For architectures that record all interrupts in
CFLog [1], SpecCFA can speculate on interrupt routine
paths if included in the sub-path definition.

3.1. System Model & Scope

As noted in Sec. 1, this work focuses on resource-
constrained edge embedded devices, implemented using
MCUs. These MCUs are single-core and run software atop
“bare-metal” (executing instructions physically from pro-
gram memory). They lack MMUs and strong privilege sep-
aration to support virtual memory or secure micro-kernels.
This scope is aligned with the related work discussed in
Sec. 2. As mentioned earlier, our work targets both types
of CFA architectures considered in the literature: those em-
ploying custom hardware designs and those based on TEEs.

Custom hardware approaches assume no reliance on pre-
existent hardware features. On the other hand, they employ
small hardware modifications to implement CFA. In this
case, SpecCFA features are also implemented in hardware,
as part of the CFA RoT. This model is equivalent to prior
related work, without additional assumptions. We present
this version of SpecCFA in Sec. 4.

For the TEE-based version of SpecCFA, discussed in
Sec. 5, our implementation instantiates unmodified ARMv8
MCUs equipped with TrustZone-M. Attested programs exe-
cute in the “Non-Secure” World, while the “Secure World”
is trusted and used to implement the CFA RoT (including
SpecCFA new features). This Adv model is equivalent to
prior work on TEE-based CFA, without additional assump-
tions.

3.2. Adversary (Adv) Model

SpecCFA with custom hardware considers a strong Adv
that can exploit software vulnerabilities in Prv to (1) mod-
ify any writable memory that is not explicitly protected
by hardware-enforced access controls; (2) cause malicious
control flow transfers; and (3) attempt to hide their malicious

Table 1. NOTATION SUMMARY

Symbol Definition
PC Program Counter (points to the current instruction).
Wen MCU write enable bit (set when writing to memory)
Daddr the MCU address being read or written from/to.

DMAen DMA write enable bit (set when DMA writes to mem-
ory)

DMAaddr the DMA address being read or written from/to.
BlockMem Reserved memory for storing sub-path speculations
CFLog log that stores attested control flow
CFSize current size of CFLog

(src, dest) source and destination of the current control flow transfer
hwen set when CFA module is appending CFLog with

(src, dest)
Blocki sequence of transfers defining sub-pathi speculation
blockbase the base address of a block with respect to BlockMem.
blockptr points to (blocksrc, blockdest) being checked.
blockID the ID of a sub-path
blocklen the length of the sub-path

(blocksrc, blockdest) the source/destination addresses in a given sub-path entry
detectactivei set by Blocki Detect module when sub-pathi has oc-

curred
activeaddri address of sub-pathi in CFLog when detectactivei is set
activeID the selected blockIDi when detectactivei is set
detectany a signal set when any sub-path has been detected
specen a signal set when any speculation (or repeat) is detected

(specaddr, specvalue) the location and value of the optimization and in CFLog

actions (in the form of injected code or hijacked control-
flows). Unless prevented, modifications to program memory
can change instructions, and modifications to data memory
can corrupt intermediate computation results and affect the
program’s control flow. The TEE-based version of SpecCFA
considers that Adv can fully compromise the Non-Secure
World on Prv. Adv can exploit vulnerabilities to launch
code injection attacks, hijack control flow, or perform code
reuse attacks. In addition, Adv can manipulate any Non-
Secure World configuration registers. In each case, our Adv
model remains consistent with existing CFA architectures.
In both cases, hardware attacks that require physical ac-
cess/modification to circumvent Prv hardware protections
(or hardware-protected software) are out-of-scope. Protec-
tion against physical hardware attacks involves orthogonal
physical access control measures [64].

4. SpecCFA with Custom Hardware

Fig. 2 depicts a CFA-enabled MCU architecture extended
with SpecCFA’s custom hardware design. Table 1 summa-
rizes the notation used in the rest of the paper.

The underlying CFA architecture monitors several CPU
signals at runtime. By checking the program counter (PC)
as well as the opcode of the currently executing instruc-
tion, it obtains control flow transfers’ source and desti-
nation (src, dest) addresses to append them to CFLog as
they occur. When writing the (src, dest) pair to CFLog,
it sets a flag (denoted hwen). SpecCFA interacts with the
CFA architecture by monitoring hwen and (src, dest) being
written to CFLog. In addition to these signals from the
CFA architecture, SpecCFA hardware also monitors certain
signals from the MCU to provide additional properties. PC
is used to determine which part of the software is executing.
Signals regarding memory accesses, such as the write- and
read-enable bits (Wen, Ren, respectively) indicate that the
MCU is currently writing to memory (Wen = 1) or reading
from memory (Ren = 1). Whenever a read/write occurs,

4



Figure 2. System overview of SpecCFA hardware

the Daddr signal contains the address of the read/written
memory address. Similarly, SpecCFA monitors Direct Mem-
ory Access (DMA) related signals (DMAaddr, DMAen)
to verify memory accesses performed by DMA. Whenever
DMA accesses (either reads or writes) memory, DMAaddr

contains the address being accessed and DMAen = 1.
Both SpecCFA-specific modules and the underlying CFA

architecture can modify CFLog’s designated memory. In
addition, both also monitor the current size of CFLog (de-
noted CFSize), which is incremented by the CFA architecture
whenever it appends a new entry to CFLog to track the next
available memory address. Finally, SpecCFA interfaces with
and monitors BlockMem, which contains memory blocks
dedicated to storing the sub-path speculation definition(s), as
received from Vrf in the CFA requests. BlockMem, CFLog,
and CFSize are stored in hardware-protected and dedicated
addresses in memory that are inaccessible to untrusted
software in Prv and can only be written by the CFA and
SpecCFA modules.

4.1. Memory Organization & Sub-Modules

In its hardware-based version, SpecCFA is composed
of four internal sub-modules, namely: Memory Interface,
Block Detect module(s), Repeat Detect, and Memory Mon-
itor. Fig. 3 further details their interconnections.

Memory Interface performs accesses to CFLog and
CFSize (in memory) to replace matching sub-paths, when
detected. SpecCFA instantiates one Block Detect module per
speculated sub-path (referred to as a “block” of control flow
transfers) in BlockMem, and each instance is responsible
for detecting the occurrence of their associated sub-path in
CFLog. Each Block Detect module interfaces with Block-
Mem directly to read the ID, len, and sub-path (src, dest)
pairs of a given block. For the remainder of this section, we
refer to the data read from BlockMem by each Block Detect
module as (blockID, blocklen, blocksrc, blockdest).

Every Block Detect module compares each current (src,
dest) being written to CFLog to their (blocksrc, blockdest)
pairs in BlockMem to determine if their sub-path has oc-
curred. At each match, they iterate through BlockMem to
determine the next expected (blocksrc, blockdest) pair to be

checked. When a full sub-path is detected, they output the
following signals:
1) detectactive : a flag indicating that a sub-path has been

detected.
2) activeaddr : the memory address of the sub-path in

CFLog as an offset to the base address of CFLog.
3) blockID : the ID associated with the detected sub-path.

All Block Detect modules’ outputs are selected by a
multiplexer (MUX), using detectactive bits as a selector.

The Repeat Detect module monitors detected sub-paths
for repeated adjacent speculations. The module replaces
repeated speculations with a counter of how many times
the sub-path occurred successively to further reduce CFLog

size (instead of logging the same symbol multiple times).
The module receives a logic OR of all detectactive signals,
indicating that one of the Block Detect modules detected a
sub-path. In addition, it receives activeID and activeaddr
as outputs from the MUX, which contain the blockID and
memory address in CFLog of the detected sub-path. Repeat
Detect then compares the detected sub-path with the pre-
vious speculation and sets three output signals: specvalue,
specaddr, and specen. If a repeat is detected, the module
increments an internal repeat counter, sets specvalue to the
value of this counter, and specaddr to the address of the
counter in CFLog. Otherwise, specvalue and specaddr are
set to activeID and activeaddr, respectively. In either case,
specen is set to indicate a speculation match was found.

The Memory Interface module receives specen along
with specvalue and specaddr which contain the current
match and address of the match in CFLog. When specen is
set, The Memory Interface then writes specvalue to CFLog

at specaddr and decrements CFSize according to the size
reduction due to the matching sub-path replacement.

Finally, the Memory Monitor ensures that no untrusted
software on Prv can edit BlockMem. It triggers a hardware
exception whenever CPU-writes or DMA-writes to Block-
Mem are attempted unless they originate from within the
CFA RoT. To detect writes within the bounds of BlockMem
and determine whether they originate from the CFA’s RoT,
Memory Monitor checks the signals: PC, Wen, Daddr,
DMAen, and DMAaddr (see Sec. 4.3 for details).

4.2. Sub-Path Detection Finite State Machine

The sub-path detection logic is defined in the finite
state machine (FSM) depicted in Fig. 4 with three states:
Idle, Monitor, and Detect. Each Block Detect module is
implemented as one instance of this FSM and is initialized
in the Idle state. All FSM transitions occur based on com-
paring the current entry in CFLog to (blocksrc , blockdest).
Each Block Detect module maintains a pointer, blockptr ,
which points to one (blocksrc , blockdest ) pair in Block-
Mem. For example, for a Block Detect module to monitor
(blocksrci , blockdesti ), it sets blockptr = i. Given the current
blockptr, a module can compare the current CFLog entry to
the appropriate sub-path transfer to determine if the current
CFLog entry:

5



Figure 3. SpecCFA hardware components

Idle
blockptr = 0

detectactive = 0

Monitor
blockptr += 1
detectactive = 0

Detect
blockptr = 0

detectactive = 1
else transferlast

transferinter

transferinter transferlast

detectany
∨

transfermismatch

else

transferinter

transferlast

Figure 4. State Machine of the Block Detection module(s)

• matches the first or an intermediate (blocksrc , blockdest)
in the sub-path (denoted transferinter in Fig. 4);

• matches the last (blocksrc , blockdest) in the sub-path
(denoted transferlast in Fig. 4); or

• is a mismatch (denoted transfermismatch in Fig. 4).
In addition, each Block Detect module receives the signal
detectany from the outer SpecCFA module, which is set
when another Block Detect module has detected its sub-
path.

When the FSM is in the Idle state, blockptr = 0
and (blocksrc , blockdest ) contains the first transfer of the
sub-path. The FSM transitions when the first (src, dest)
occurs. If (src, dest) matches (blocksrc , blockdest ) and the
Vrf-specified sub-path contains just one control flow trans-
fer, a transition to Detect will occur because the whole
path (one transfer) has been detected. Otherwise, a tran-
sition to Monitor occurs. If (src, dest) does not match
(blocksrc , blockdest ), the FSM stays in Idle.

Upon entering Monitor, SpecCFA has identified that
the current CFLog entry matches the first transfer of the
sub-path. To confirm a sub-path has occurred in CFLog,
the Block Detect module must identify the exact remaining
sequence of transfers in the sub-path. Therefore, while in
Monitor, the Block Detect module increments blockptr for
each match, to compare the next CFLog entry to the next

HW Specification: Monitor Boundaries of BlockMem

(¬(PC ∈ TCB) ∧ (Wen ∧ (Daddr ∈ BlockMem)))

∨ (DMAen ∧ (DMAaddr ∈ BlockMem)) → reset

Figure 5. Memory Monitor specification

HW Specification: Base address of Blocki in BlockMem:

blockbasei =

{
0, if i = 0
blockbase(i−1)

+ (2 × blocklen(i−1)
) + 1 otherwise

HW Specification: Given blockbasei and blockptr , get block signals

blockID := BlockMem[blockbasei ][15 : 8 ]

blocklen := BlockMem[blockbasei ][7 : 0 ]

blocksrc := BlockMem[blockbasei + blockptr + 1 ]

blockdest := BlockMem[blockbasei + blockptr + 2 ]

Figure 6. Blocki Detect Module signals from BlockMem

transfer in the sub-path. For as long as (blocksrci , blockdesti )
matches CFLog entries, the FSM stays in the Monitor
state. If a mismatch occurs or another sub-path is detected
(detectany = 1), the FSM transitions back to Idle and
blockptr is reset to 0. If the last transfer in the sub-path is
reached, indicating a complete match, the FSM transitions
to Detect.

In Detect, SpecCFA hardware optimizes CFLog by re-
placing the sub-path with the blockID. detectactive is set to
1, triggering the Memory Interface module, which optimizes
CFLog according to the specaddr and specvalue values for
the detected sub-path. After the replacement, CFSize is
updated to reflect the new reduced CFLog size. In addition,
the blockptr is reset to 0. If the next transition is the first
transfer of the sub-path, the FSM transitions to Monitor or
Detect depending on the size of the sub-path. Otherwise,
the FSM transitions back to the Idle state.

4.3. Hardware Specification Details

Memory Monitor: Per Fig. 5, this module monitors
MCU signals to identify attempts to tamper with BlockMem
during the attested execution. To detect when the MCU is
not executing the CFA RoT, the Memory Monitor compares
PC to the bounds of the memory region storing the CFA
RoT code, denoted Trusted Computing Base (TCB). If Wen

is set and Daddr is within the bounds of BlockMem, a CPU
write to BlockMem is occurring. If PC is outside TCB,
SpecCFA interprets this action as an attempt by Adv to tam-
per with BlockMem; thus, it triggers a hardware exception.
Similarly, if DMAen is set and DMAaddr is within the
bounds of BlockMem, DMA is modifying BlockMem (note
that BlockMem is a fixed reserved memory region). This trig-
gers an exception at any time during execution. Similar to
other hardware exceptions on the target MCU (TI MSP430),
this exception causes a system-wide reset. Note that similar
controls from the underlying CFA architecture [1] prevent
unauthorized modification of CFLog.

Block Detect Module(s): Each instance of this module
abides by the state machine in Fig. 4. The hardware specifi-
cations for interfacing with BlockMem are shown in Fig. 6.

6



Defintions: Intermediate, Last, and Mismatch Sub-Path Transfers

transfermismatch := hwen∧((src ̸= blocksrc) ∨ (dest ̸= blockdest ))

transferinter := hwen∧(src = blocksrc) ∧ (dest = blockdest )

∧(blockptr < blocklen − 1)

transferlast := hwen∧(src = blocksrc) ∧ (dest = blockdest )

∧(blockptr = blocklen − 1)

Sub-Path Tracking:

blockptr =

 blockptr + 1, if transferinter
0, else if transfermismatch

blockptr otherwise

Active Sub-Path Detection:

transferlast → detectactive

activeaddr =

 (CFSize − 2) − (2 × blocklen), if transferlast
∧(repeatctr = 2)

activeaddr otherwise

Figure 7. Block Detection specification

Each Block Detect module must determine the sub-path
block’s base address (blockbase ) relative to the entire Block-
Mem region to read the correct signals from BlockMem. This
address is zero for the first sub-path block. The locations of
all subsequent sub-path blocks depend on the length of the
previous block(s), which are variable depending on Vrf’s
sub-path specification. Therefore, for the remaining blocks,
the blockbase is calculated by incrementing the previous
block’s base address by its size. Each block contains a
blockID , blocklen , and a series of control flow transfers.
Since blocklen refers to the number of 32-bit control flow
transfers in the sub-path, the size of the transfers in memory
is 2 × blocklen given 16-bit addresses in the target MCU.
Both blockID and blocklen are stored within a single address.
As such blockbasei = blockbase(i−1)

+(2×blocklen(i−1)
)+1.

With blockbasei and blockptr , the remaining entries can
be read from BlockMem. The first signal returned is blockID ,
which references an 8-bit sub-path ID . The second signal
is blocklen, which references the 8-bit length of the sub-
path. Since MSP430 has 16-bit addresses, the upper bits
of one address store ID, while the lower bits store len.
Next, blocksrc and blockdest signals are set based on both
the blockbasei and blockptr values. Since the first address
stored in a block is (ID | len) (as shown in Fig. 3), the
first (src, dest) are stored starting in an offset by 1 and 2
addresses, respectively. Therefore, to retrieve the expected
blocksrc, this module reads from BlockMem at the location
defined by blockbasei + blockptr +1. Similarly, the location
defined by blockbasei + blockptr + 2 is referenced to return
the expected blockdest.

Fig. 7 shows the hardware specifications for different
types of transfers in a sub-path. With the signals from
BlockMem, each Block Detect module compares the cur-
rent (src, dest) pair to (blocksrc, blockdest) If the cur-
rent (src, dest) does not match the current sub-path pair
(blocksrc, blockdest), then the current control flow transfer
is identified as a mismatch (transfermismatch bit is set). If
the two pairs match, the module must determine if this is
the last transfer in the sub-path or an intermediate transfer.

The type of match is determined by comparing blockptr
and blocklen. transferinter is set when an intermediate
sub-path transfer is matched. transferlast is set when the
last sub-path transfer match is reached. In accordance with
the aforementioned logic, blockptr is incremented whenever
an intermediate sub-path transfer match occurs and reset
whenever a mismatch is reached.

The internal signal transferlast will only be set when
the last sub-path transfer has occurred, implying that all
prior transfers were matches. At that stage, the output sig-
nal detectactive is set. The address of the active sub-path
(activeaddr) is also updated with the start location of the
sub-path in CFLog. This address is determined by subtract-
ing 2×blocklen from the location of the last (src, dest) pair
in CFLog (CFSize − 2).

Memory Interface: This module overwrites CFLog

based on specvalue and specaddr. As described in Sec. 4.1,
specvalue contains the ID of the detected sub-path, and
specaddr holds the memory address in CFLog where the
sub-path starts. When the specen signal is set, specvalue is
written to CFLog at the memory address offset specified by
specaddr. Performing this write to CFLog makes specvalue
the last entry in CFLog. Therefore, CFSize is updated to
specaddr + 2. Finally, in the specific case of multiple con-
secutive matches of the same sub-path, the Repeat Detect
module is responsible for replacing repeated ID entries for
a count of the number of repetitions (see Appendix A for
details).

5. TEE-based SpecCFA

ARMv8 Cortex-M MCUs are equipped with Trust-
Zone (TrustZone-M) [65]: an architectural security exten-
sion to create an isolated execution environment. Through
this extension, hardware, software, and data on the MCU
are divided into two worlds: “Secure” and “Non-Secure”
Worlds. TrustZone ensures that Secure World code and data
cannot be tampered with by code residing in the Non-
Secure World (e.g., vulnerable/compromised MCU appli-
cation code). Thus, security-critical data and code can be
safely stored in the Secure World. Furthermore, the Non-
Secure World can only call Secure World functions from se-
cure entry points specified as Non-Secure-Callables (NSC),
enabling controlled invocation of Secure World code from
the Non-Secure World.

CFA techniques that leverage TrustZone-M [2], [48],
[53] or other TEE support [51], [52] leverage the Secure
World to implement the CFA RoT while untrusted applica-
tion resides in the Non-Secure World. To record control flow
transfers, the application is instrumented before deployment,
and a call to the Secure World (via an NSC) is placed
before each branching instruction. This NSC invokes a
Secure World function for logging the branch destination to
a Secure World CFLog. This design prevents unauthorized
writes to CFLog.

Fig. 8 presents the workflow of SpecCFA in a TrustZone-
based CFA architecture. The CFA RoT and SpecCFA’s func-
tionality are implemented within the Secure World. Each

7



Figure 8. SpecCFA workflow on TrustZone-M

NSC switches to the Secure World to append CFLog with
the new transfer. TrustZone makes the instrumented code
unmodifiable between the point when it is measured (i.e.,
MAC-ed/signed by the CFA RoT) and the point when the
attested execution completes [2], guaranteeing to Vrf that all
branches in the attested code are appropriately instrumented.

Without SpecCFA, an NSC would invoke the CFA RoT
to append CFLog and resume the Non-Secure World exe-
cution. SpecCFA modifies this behavior to detect matching
sub-paths. Similar to the custom hardware version (Sec. 4),
BlockMem contains the definitions of Vrf’s expected sub-
paths, associated IDs, and sizes. For n sub-paths, it main-
tains two n-bit values where each index corresponds to the
detect and monitor signals of each monitored sub-path. Each
bit signals when a particular sub-path is currently detected or
monitored, respectively. For all sub-paths, a counter is stored
in monitorCtrs, holding the current number of consecutive
transfers from that sub-path that have occurred in CFLog.
For the most recently detected sub-path, a flag (repeat) is
maintained to signal when a sub-path repeats in adjacent
CFLog locations, and a counter (repeatCtr) stores the num-
ber of times it has repeated. All data is stored in the Secure
World and thus is made inaccessible to a compromised
application.

When an NSC triggers the CFA RoT in SpecCFA, it
first uses the reported destination address to monitor and
detect sub-paths. During this phase, the destination address
is compared to the next address of each sub-path, determined
from monitorCtrs for each sub-path. When a match occurs
for the next entry in any sub-path, the corresponding bit in
monitor is set, and its counter in monitorCtrs is incremented.
A sub-path match is detected if the new count equals the
sub-path size, and the corresponding bit in detect is set.
Otherwise, SpecCFA executes normally to append CFLog.

Once a sub-path is detected, SpecCFA modifies CFSize

to reduce CFLog and writes the sub-path ID to CFLog.
Then, it compares the current sub-path ID to the last logged
value. If they are equal, SpecCFA increments repeatCtr and
returns to the application. When a sub-path is no longer
repeating, its repeatCtr is written to CFLog (conveying the
number of consecutive repetitions of a sub-path).

6. Security Analysis

We argue that SpecCFA added capability does not affect
the security of the underlying CFA architectures in pro-

ducing a correct and authentic CFLog. To see why, note
that Adv (in the form of compromised software in Prv, as
defined in Sec. 3.2) may attempt to leverage SpecCFA to
launch attacks against CFA in the following ways:
1) Adv could attempt to modify CFLog directly. If success-

ful, this could cause CFLog to be reset and/or overwritten
with entries that do not faithfully correspond to the
executed control flow path.

2) Adv could attempt to corrupt the content of BlockMem,
modifying the Vrf-specified sub-path speculation to in-
clude the malicious transfers. A corrupted BlockMem
would cause SpecCFA to optimize away the malicious
path from CFLog, hiding the attack.

3) Adv could attempt to impersonate Vrf over the network
to provide Prv with false sub-path speculations, hence
overwriting BlockMem to hide malicious sub-paths with
symbols that would normally denote benign sub-paths.
Case 3 is prevented by ensuring that the CFA RoT

always authenticates Vrf requests (and sub-path speculations
therein) before overwriting BlockMem. Hence, the remainder
of this analysis focuses on cases 1 and 2 for each type of
architecture.

SpecCFA on Custom Hardware Architectures: In the
hardware-based design of SpecCFA, CFLog is protected
against direct software writes by the underlying CFA. There-
fore, Adv must at run-time force an incorrect value of
specaddr, specvalue, or specen to corrupt CFLog. Since
SpecCFA hardware controls these signals, they cannot be
tampered with by any MCU software. Thus, they are unaf-
fected by the untrusted software on Prv and Adv cannot
corrupt CFLog. Unlike SpecCFA signals, the contents of
BlockMem reside in the address space of the MCU. How-
ever, it is impossible for Adv to corrupt BlockMem since the
Memory Monitor in SpecCFA prevents untrusted software
modifications (by CPU or DMA) to BlockMem.

SpecCFA on TEE-based Architectures: The TEE-
based version of SpecCFA stores CFLog in the Secure
World. Therefore, CFLog is inaccessible to Adv in the Non-
Secure World. Since the code of the attested program is
unmodifiable during the attested execution and the applica-
tion binary is instrumented (see Sec. 5), modifications to
CFLog can only occur through the instrumented NSC calls
that follow a control flow transfer. Thus, CFLog is only
appended with proper control flow transfer destinations, and
Adv cannot reset/overwrite entries. Similarly, Adv cannot
modify BlockMem or SpecCFA’s implementation (code) be-
cause they are also stored in the Secure World. BlockMem
specifications (i.e., sub-path definitions) are received from
Vrf as part of the CFA request and authenticated by the CFA
RoT on Prv before the attested execution. Therefore, they
are unmodifiable to the Non-Secure World.

7. Selecting Sub-Path Speculations

Fundamentally, SpecCFA performance depends on the
effective selection of speculation sub-paths based on pro-
gram and execution characteristics. As such, we examine
multiple possible speculation strategies.

8



7.1. Program Analysis

Static analysis of the attested code can be used for sub-
path speculation selection. This approach is valuable when
Vrf lacks access to previous CFLog-s and must rely solely
on program source code. Our static analysis-based approach
examines both the C source code and the compiled program
binary. Metadata from each function is collected, including
the number of branching instructions, the number of loops,
how many other functions call it, and how many times it
calls other functions.

In our approach, we first extract the program’s CFG.
Once built, our implementation splits the CFG into ”Seg-
ments,” inspired by prior work in [50]. Segments are deter-
mined by splitting the CFG into subgraphs at either the first
node of the graph, the last node of the graph, the first node
in a loop, or the last node in a loop. Splitting the CFG in
this way ensures all Segments are forward-edge sub-graphs.
Our implementation also splits the graph at calls and returns
in order to avoid path explosion due to indirect calls and
returns. Once the Segments are determined, the sub-paths
within each Segment are enumerated and collected. After
determining the Segment sub-paths for all functions, the set
of Segments is optimized by combining those with just one
successor Segment. The resulting set of candidate sub-paths
is then sorted based on the following priorities:
1) sub-paths that exist within loops;
2) sub-paths in the max-branching function;
3) sub-paths in a function that is called within a loop or

within the max-branching function in the code.
Sub-paths in functions that are never called or do not have
any internal branches are not considered for the initial set
of candidate sub-paths.

Based on the automatically generated candidate sub-
paths, smaller sub-paths are first selected to optimize the
utilization of BlockMem in the initial set. After that, since
the exact path that will occur might be highly unpredictable,
non-overlapping paths are next selected to increase the
initial coverage of the program. The sub-path selection can
subsequently refined based on received CFLog-s.

7.2. Automated CFLog Analysis

We also implement automated sub-path selection strate-
gies that utilize past CFLog-s. Three policies were created
to examine CFLog-s and recommend the best sub-paths:
“Top”, “Minimize”, and “Select”.

Top selects the most occurring non-overlapping sub-
paths in the prior CFLog-s. However, Top ignores sub-
path sizes and can incur large memory overhead due to the
increased size of BlockMem to store sub-path speculations
on Prv.

Minimize attempts to maximize CFLog reductions while
minimizing BlockMem sizes. It prioritizes small sub-path
sizes first, then sub-path frequency. Minimize chooses the
N most occurring smallest paths in CFLog, then iterates
through all remaining sub-paths. Each remaining path is
compared to the least-occurring selected path and replaces

Table 2. CHARACTERISTICS OF EVALUATED APPLICATIONS

App Binary Size in Bytes CFLog data (Bytes)
Ultrasonic [66] 366 4160

Syringe [3] 518 54600
Temperature [67] 564 2508

Geiger [68] 772 1740
Mouse [69] 1119 50116
GPS [70] 6474 19876

it if the candidate path occurs t% more frequently than the
selected path, where t is a configurable threshold.

Select picks the most frequent sub-path that fits within
the remaining memory in BlockMem. It operates on the
insight that, despite “Minimize” reducing BlockMem usage,
the fixed-size BlockMem remains part of SpecCFA’s memory
overhead. Therefore, optimizing memory usage may involve
filling the allocated space rather than minimizing BlockMem
use.

7.3. Manual Inspection

Another possible approach is to manually analyze previ-
ously received CFLog-s and the program’s binary. Develop-
ers may create custom speculations based on their insights
into the attested program’s behavior, expected inputs, or
specific memory constraints. While effective, this approach
demands substantial human effort, limiting its scalability.
Moreover, as more CFLog-s are received, finding optimal
speculation paths may become challenging.

8. Prototypes and Evaluation

For SpecCFA’s version based on custom hardware, we
use Xilinx Vivado tool-set [71] to synthesize SpecCFA atop
the ACFA architecture [1], which targets the openMSP430
core [72]. SpecCFA functionality was tested using the Vi-
vado simulator to ensure its correctness. We then synthe-
sized and deployed SpecCFA on the Basys3 prototyping
board, which features an Artix-7 FPGA. We implement the
TEE-based version of SpecCFA using a NUCLEO-L552ZE-
Q development board equipped with an STM32L552ZE
MCU which supports ARM TrustZone-M and is based on
the ARM Cortex-M33 (v8) operating at 110 MHz. We
integrate SpecCFA with the ISC-FLAT [2] open-source TEE-
based CFA architecture. Both implementations use UART-
to-USB as a communication interface with a baud rate of
38400. To evaluate SpecCFA on real MCU software, we port
the open-source applications to both MSP430 and ARM
Cortex-M. Table 2 shows the evaluated applications and
their characteristics.

8.1. SpecCFA HW/Run-time Overheads

The TEE-based version of SpecCFA does not modify
hardware (thus imposing no hardware overhead). However,
it requires additional processing time for each CFLog entry,
as matches are processed by the Secure World TCB (im-
plemented in software). Thus, we assess the average time

9



(a) Added NSC Time of SpecCFA-
TZ

(b) Added cost of SpecCFA-HW

(c) SpecCFA-HW vs. Related HW-CFA
Figure 9. SpecCFA cost analysis: (a) added NSC time (in µs) for 1-8 sub-
paths atop baseline CFA logging; (b) additional HW cost of 1-8 sub-paths
atop baseline of openMSP430+ACFA; (c) Comparison to related HW-based
CFA.

spent by NSC calls to the Secure World. Each NSC call
must check the new entry against all active speculation sub-
paths (until the first sub-path match – or no match – is
found) to appropriately append to/optimize CFLog. Fig. 9(a)
shows this cost as a function of the number of sub-paths
checked for matches. On average, baseline CFA without
any speculation (B.) requires 4.4µs to append an entry to
CFLog. With 1 sub-path checked, the average time increases
to 7.6µs. After that, each additional sub-path check adds
1.8µs, with 20.8µs to check 8 independent sub-paths per
NSC call.

For the version of SpecCFA based on custom hardware,
similar to the related work [1], [46], [49], [50], we measure
the hardware overhead in terms of added Look-Up Tables
(LUTs) and Flip-Flops (FFs). The increase in LUTs esti-
mates the additional chip cost and size due to combinatorial
logic, while the added FFs estimate the state overhead for
sequential logic. We vary the number of supported specu-
lation sub-paths from 1 to 8. The results are presented in
Fig. 9(b). As a conservative baseline, we show the cost of
the openMSP430 core equipped with the underlying CFA
architecture [1], excluding any hardware peripherals (e.g.,
general purpose I/O, communication interfaces, timers, etc.)
that would normally add to the baseline hardware cost
(B.) of the MCU. To support one sub-path speculation,
SpecCFA adds 190 LUTs and 107 FFs. Each additional sub-
path incurs an overhead of approximately 85 LUTs and 49
FFs. The custom hardware-based design of SpecCFA incurs
no runtime overhead to speculate on sub-paths because its
modules operate in parallel to the MCU core.

To put SpecCFA’s hardware overhead into context, we
compare its cost with related CFA architectures (that do
not support configurable path speculations) in Fig. 9(c).
As SpecCFA implementation is built atop ACFA [1], its
relative cost increases accordingly. However, compared to
other prior work in hardware-based CFA (LiteHAX [49],
LO-FAT [46], and ATRIUM [50]), SpecCFA incurs relatively
low overhead. Even with support 8 sub-paths (“SpecCFA8”
in Fig. 9(c)), SpecCFA’s cost remains low in comparison.

Figure 10. CFLog and BlockMem sizes (KB) for 1-8 simultaneous sub-
path speculations.

This indicates the feasibility of also deploying SpecCFA on
top of existing hardware-based CFA at a relatively low over-
head. Note that we could not implement SpecCFA directly
on top of these hardware-based CFA architectures because
they are not open-source. However, we see no reason why
SpecCFA design would not apply to them.

8.2. Storage & Communication Savings

To evaluate SpecCFA’s effectiveness, we start by select-
ing and configuring sub-paths based on manual inspection of
the program source code and previously generated CFLog-
s. In Sec. 8.3, we revisit the automated methods discussed
in Sec. 7. We measure the overall reduction of CFLog for
1-8 sub-path speculations. We also contrast the reduced
CFLog size with BlockMem size (required to store the Vrf-
defined speculation paths). This allows us to observe the
total memory required to store both the optimized CFLog

and respective sub-path specifications. Fig. 10 shows the
memory requirement (in Bytes) to store CFLog and Block-
Mem (stacked in each bar) for hardware-based and TEE-
based SpecCFA for 1-to-8 sub-paths.

In both designs, the total memory overhead is reduced
as SpecCFA speculates on more sub-paths. Since the op-
timizations are application-aware, the savings vary across
each application. For example, the first configured sub-
path (selected as the most repetitive sequence of transfers)
for Ultrasonic Sensor and Syringe Pump alone leads to

10



significant savings. For these applications, optimizing based
on 1 sub-path reduces the CFLog by 97.9-97.5% and 93.3-
92.2%, respectively. This reduction is due to these appli-
cations executing many repeated control flow paths (e.g.,
repetitive iterations of signal processing functions and busy-
wait loops). For the same reason, the Temperature Sensor
gains most of its savings (94.4-93.1% CFLog reduction)
after speculating on two paths. The GPS, Geiger Counter,
and Mouse operations save at a steady rate as more sub-
paths are configured. This increase in savings occurs because
different sub-paths occur at similar rates.

Due to differences in the two underlying instruction sets
(MSP430 vs. ARMv8 Cortex-M), the exact size of CFLog

varies for each application in each architecture. CFLog-s
for the TEE-based approach are on average smaller due to a
more efficient instruction set and because instrumentation
can allow the underlying CFA to ignore static branches.
The hardware-based approach is implemented alongside
MSP430, which has a reduced and less efficient instruction
set. The hardware detects control flow transfers through
the opcodes. Therefore, it records additional transfers for
both direct and conditional jumps since they share the
same MSP430 instruction opcode. We refer the reader to
Appendix B for additional architectural differences and im-
plementation details.

Naturally, the memory required to store BlockMem in-
creases as more sub-path speculations are used. However,
the additional memory to store the sub-paths specifications
is minimal compared to the savings made when speculating
on them.

The memory savings shown in Fig. 10 are also crucial
for overall attested operation execution latency. Due to the
limited amount of memory on Prv, execution may need to
be interrupted to transmit a partial snapshot of CFLog to
Vrf and free storage for additional transfers. This imposes
significant delays to the attested execution, which can be
avoided with SpecCFA. We revisit this point in Sec. 8.4.

8.3. Path Selection Policy Comparison

Fig. 11 shows the resulting memory overhead for each
selection method as a sum of BlockMem to store the sug-
gested sub-paths and the optimized CFLog after speculation.
Manual Inspection by a developer, in most cases, gains large
CFLog optimizations due to prior knowledge of expected
input/program behavior and recognizable patterns. However,
this approach is not scalable and requires potentially im-
practical human efforts. Of the four automated processes,
the static analyzer is the least performant. Since the static
analysis does not consider any prior execution context, it is
inherently limited in what it can learn about the program.
However, it remains a suitable choice as a starting point
when CFLog-s from prior executions do not yet exist or are
unavailable. It performs best on programs that heavily exe-
cute repeated tasks, such as the Ultrasonic and Temperature
Sensors.

All methods that inspect prior CFLog-s achieve opti-
mizations comparable to or better than Manual Inspection.

Figure 11. CFLog and BlockMem total size (KB) for each sub-path se-
lection method: Manual Inspection (Man.), Select (Sel.), Minimize (Mini.),
Top, and Static Analysis (Stat.)

In most cases, Top achieves comparable CFLog reductions
to Manual Inspection. However, as it does not consider sub-
path size, it normally incurs the largest BlockMem overhead
of the three CFLog inspection methods. Minimize reduces
the memory overhead associated with storing sub-paths. In
prioritizing smaller sub-paths, Minimize often misses bet-
ter optimizations from longer sub-paths, decreasing CFLog

reductions. Of the three methods, Select achieves the most
consistent optimizations, comparable to Top while using less
BlockMem. For Geiger Counter, GPS, and Mouse, Top beats
Select and Minimize since the most occurring sub-paths
in these programs have larger lengths. Similarly, Minimize
outperforms Select for Mouse because Minimize uses more
BlockMem than Select.

8.4. End-to-End Latency

To assess SpecCFA’s end-to-end effect on attested ex-
ecution performance, we measure the total time taken to
perform an attested execution of different operations on
Prv. In this case, a series of authenticated CFLog segments
must be transmitted to Vrf throughout the execution of the
application, whenever the CFLog’s designated memory is
full. This is required before subsequent transfers can be
appended to CFLog. As a consequence, a significant portion
of the attested execution time is spent on interruptions by

11



(a) Custom hardware-based SpecCFA

(b) TEE-based SpecCFA

Figure 12. End-to-end latency of attested operations compared to baseline
(without SpecCFA).

the CFA RoT to MAC/sign and transmit a CFLog slice to
Vrf.

Given SpecCFA’s reduced CFLog sizes, fewer transmis-
sions are required. To evaluate this impact on the overall
CFA performance, we measure the total attested execution
time from when Vrf requests CFA until when attested ex-
ecution completes (including Vrf receipt of all execution
evidence). Fig. 12 shows times of the custom hardware-
based version and the TEE-based version and zooms in on
Ultrasonic Sensor, Temperature Sensor, and Geiger Counter
applications.

In this experiment, CFLog slice sizes are set to 256
Bytes, and SpecCFA is equipped to support 2 sub-paths. We
then measure the total attested execution time (including
the execution of the attested program, building CFLog, and
generating a signature/MAC over CFLog). This total time
is denoted “Prv Run-Time”. We also measure the time
spent transmitting the CFLog. Several applications present
significant reductions in the overall attested execution time
results. The Ultrasonic Sensor, Syringe Pump, and Tem-
perature Sensor applications present ≈81-95% reduction in
Prv Run-Time and ≈90-97% reduction in transmission.
This performance improvement follows directly from the
reduced amount of CFLog data that Prv must authenticate
and transmit. With only 2 sub-paths, Geiger, Mouse, and
GPS show less pronounced savings of ≈13-47% for run-
time and ≈17-47% for transmission time. This follows from
these applications requiring more than 2 sub-paths to exhibit
pronounced CFLog reductions (recall Fig. 6). Appendix B
contains additional implementation details of cryptographic
operations and communication, as implemented by the un-

derlying CFA architectures [1], [2].

9. Limitations & Potential Improvements

The initial concept proposed in SpecCFA presents several
avenues for future work.

Sub-path representation: SpecCFA’s initial design rep-
resents and stores sub-path speculations verbatim on Prv.
It would be interesting to propose other sub-path represen-
tations (e.g., using regular expressions or wildcards) that
could enable 1 sub-path to be matched to multiple PMEM
addresses based on offsets.

Linear Hardware Cost: In the initial design, the cost
of SpecCFA hardware increases linearly as one Block Detect
module is required for each speculated sub-path. Therefore,
future work could propose hardware optimizations to reduce
SpecCFA hardware overhead by serializing the sub-path
detection and reducing the number of Block Detect modules.

Additional Automated Sub-path Selection Methods:
This work presented four methods for automated selection:
one based on binary analysis and three based on inspecting
prior CFLog-s. Future work should expand upon these meth-
ods to provide additional application-specific suggestions.
Since our current program analysis is static, a potential
future direction is to develop a system for dynamic analysis
of a program and its sub-paths to gain insight into the
likelihood of its execution. In addition, our current methods
that inspect prior CFLog-s perform pattern matching. In
future work, these methods can be extended to perform
more advanced feature extraction from CFLog-s, prior input
data, and the source code to make stronger predictions about
possible future sub-paths.

10. Conclusion

We propose SpecCFA: an approach to enable con-
figurable application-aware sub-path speculations in CFA.
SpecCFA provides Vrf with the ability to speculate on a pro-
gram’s likely sub-paths to reduce CFLog size significantly.
Through SpecCFA systematic design, Vrf can speculate on
various sub-paths of any length without loss of informa-
tion in CFLog. We implement two versions of SpecCFA,
based on custom hardware and on TEEs. Our evaluation,
performed on SpecCFA’s publicly available prototypes [59],
demonstrates significant performance improvement for var-
ious MCU applications while retaining all standard CFA
security guarantees.

Acknowledgements

We thank ACSAC’24 anonymous reviewers for their
constructive comments. This work was partly funded by the
National Science Foundation (SaTC award #2245531).

12



References

[1] A. Caulfield, N. Rattanavipanon, and I. D. O. Nunes, “ACFA: Secure
runtime auditing & guaranteed device healing via active control
flow attestation,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
5827–5844. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/caulfield

[2] A. J. Neto and I. D. O. Nunes, “ISC-FLAT: On the conflict between
control flow attestation and real-time operations,” in 2023 IEEE 29th
Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, 2023, pp. 133–146.

[3] T. Walker, “OpenSyringePump Github Repository,” https://github.
com/manimino/OpenSyringePump, 2022.

[4] A. T. Noman, S. Hossain, S. Islam, M. E. Islam, N. Ahmed, and
M. M. Chowdhury, “Design and implementation of microcontroller
based anti-theft vehicle security system using gps, gsm and rfid,”
in 2018 4th International Conference on Electrical Engineering and
Information & Communication Technology (iCEEiCT). IEEE, 2018,
pp. 97–101.

[5] M. Ammar, B. Crispo, and G. Tsudik, “Simple: A remote attestation
approach for resource-constrained iot devices,” in 2020 ACM/IEEE
11th International Conference on Cyber-Physical Systems (ICCPS).
IEEE, 2020, pp. 247–258.

[6] M. N. Nafees, N. Saxena, A. Cardenas, S. Grijalva, and P. Bur-
nap, “Smart grid cyber-physical situational awareness of complex
operational technology attacks: A review,” ACM Computing Surveys,
vol. 55, no. 10, pp. 1–36, 2023.

[7] H. Kayan, M. Nunes, O. Rana, P. Burnap, and C. Perera, “Cybersecu-
rity of industrial cyber-physical systems: A review,” ACM Computing
Surveys (CSUR), vol. 54, no. 11s, pp. 1–35, 2022.

[8] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and
G. Tsudik, “Toward remotely verifiable software integrity in resource-
constrained iot devices,” IEEE Communications Magazine, vol. 62,
no. 7, pp. 58–64, 2024.

[9] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “SMART:
Secure and minimal architecture for (establishing dynamic) root of
trust,” in NDSS. Internet Society, 2012.

[10] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner,
and G. Tsudik, “VRASED: A verified hardware/software co-design
for remote attestation,” USENIX Security’19, 2019.

[11] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, “Tytan: Tiny trust anchor for tiny devices,” in Proceedings
of the 52nd annual design automation conference, 2015, pp. 1–6.

[12] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A security architecture for tiny embedded devices,” in EuroSys.
ACM, 2014.

[13] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “HYDRA: hybrid
design for remote attestation (using a formally verified microkernel),”
in Wisec. ACM, 2017.

[14] I. De Oliveira Nunes, S. Jakkamsetti, N. Rattanavipanon, and
G. Tsudik, “On the toctou problem in remote attestation,” in Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 2921–2936.

[15] J. Noorman, J. V. Bulck, J. T. Mühlberg, F. Piessens, P. Maene,
B. Preneel, I. Verbauwhede, J. Götzfried, T. Müller, and F. Freiling,
“Sancus 2.0: A low-cost security architecture for iot devices,” ACM
TOPS, 2017.

[16] M. Grisafi, M. Ammar, M. Roveri, and B. Crispo, “PISTIS: Trusted
computing architecture for low-end embedded systems,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 3843–
3860.

[17] M. M. Rabbani, E. Dushku, J. Vliegen, A. Braeken, N. Dragoni, and
N. Mentens, “Reserve: Remote attestation of intermittent iot devices,”
in Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems, 2021, pp. 578–580.

[18] J. Vliegen, M. M. Rabbani, M. Conti, and N. Mentens, “Sacha: Self-
attestation of configurable hardware,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
746–751.

[19] M. Ammar, M. Washha, and B. Crispo, “Wise: Lightweight intelligent
swarm attestation scheme for iot (the verifier’s perspective),” in 2018
14th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE, 2018, pp. 1–8.

[20] S. Surminski, C. Niesler, L. Davi, and A.-R. Sadeghi, “Dma’n’play:
Practical remote attestation based on direct memory access,” in Inter-
national Conference on Applied Cryptography and Network Security.
Springer, 2023, pp. 32–61.

[21] S. Surminski, C. Niesler, F. Brasser, L. Davi, and A.-R. Sadeghi,
“Realswatt: Remote software-based attestation for embedded devices
under realtime constraints,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp.
2890–2905.

[22] L. Petzi, A. E. B. Yahya, A. Dmitrienko, G. Tsudik, T. Prantl, and
S. Kounev, “Scraps: Scalable collective remote attestation for pub-
sub iot networks with untrusted proxy verifier,” USENIX Security
Symposium, 2022.

[23] R. Kennell and L. H. Jamieson, “Establishing the genuinity of remote
computer systems,” in 12th USENIX Security Symposium (USENIX
Security 03), 2003.

[24] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “SWATT:
Software-based attestation for embedded devices,” in IEEE Sympo-
sium on Security and Privacy, 2004. Proceedings. 2004. IEEE, 2004,
pp. 272–282.

[25] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla,
“Pioneer: verifying code integrity and enforcing untampered code
execution on legacy systems,” in Proceedings of the twentieth ACM
symposium on Operating systems principles, 2005, pp. 1–16.

[26] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for
key establishment in sensor networks,” in Distributed Computing in
Sensor Systems: 4th IEEE International Conference, DCOSS 2008
Santorini Island, Greece, June 11-14, 2008 Proceedings 4, 2008, pp.
372–385.

[27] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh, “Copilot-
a coprocessor-based kernel runtime integrity monitor.” in USENIX
security symposium. San Diego, USA, 2004, pp. 179–194.

[28] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth, “New results for timing-based attestation,” in 2012
IEEE Symposium on Security and Privacy. IEEE, 2012, pp. 239–
253.

[29] D. Schellekens, B. Wyseur, and B. Preneel, “Remote attestation on
legacy operating systems with trusted platform modules,” Science of
Computer Programming, vol. 74, no. 1-2, pp. 13–22, 2008.

[30] Y. Li, J. M. McCune, and A. Perrig, “Viper: Verifying the integrity of
peripherals’ firmware,” in Proceedings of the 18th ACM conference
on Computer and communications security, 2011, pp. 3–16.

[31] S. Surminski, C. Niesler, S. Linsner, L. Davi, and C. Reuter, “Scatt-
man: Side-channel-based remote attestation for embedded devices that
users understand,” in Proceedings of the Thirteenth ACM Conference
on Data and Application Security and Privacy, 2023, pp. 225–236.

[32] I. De Oliveira Nunes, K. Eldefrawy, N. Rattanavipanon, and
G. Tsudik, “APEX: A verified architecture for proofs of execution on
remote devices under full software compromise,” in USENIX Security,
2020.

[33] A. Caulfield, N. Rattanavipanon, and I. D. O. Nunes, “Asap: Recon-
ciling asynchronous real-time operations and proofs of execution in
simple embedded systems,” 2022.

13

https://www.usenix.org/conference/usenixsecurity23/presentation/caulfield
https://www.usenix.org/conference/usenixsecurity23/presentation/caulfield
https://github.com/manimino/OpenSyringePump
https://github.com/manimino/OpenSyringePump


[34] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in IEEE SP.
IEEE, 2015, pp. 745–762.

[35] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of
fine-grained control flow integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security,
2015, pp. 901–913.

[36] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM conference on Computer and communications security,
2007, pp. 552–561.

[37] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, 2011, pp. 30–40.

[38] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
pp. 1–40, 2009.

[39] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in Proceedings of the 15th ACM conference on
Computer and communications security, 2008, pp. 15–26.

[40] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sul-
livan, O. Arias, and Y. Jin, “Hafix: Hardware-assisted flow integrity
extension,” in Proceedings of the 52nd Annual Design Automation
Conference, 2015, pp. 1–6.

[41] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of {Coarse-Grained}{Control-Flow}
integrity protection,” in 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 401–416.

[42] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using
intel processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4, pp.
585–598, 2017.

[43] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX
security symposium, vol. 98. San Antonio, TX, 1998, pp. 63–78.

[44] T. Mishra, J. Wang, T. Chantem, R. Gerdes, and N. Zhang, “A
procrastinating control-flow integrity framework for periodic real-time
systems,” in RTNS, 2023.

[45] M. Ammar, A. Caulfield, and I. D. O. Nunes, “Sok: Runtime in-
tegrity,” arXiv preprint arXiv:2408.10200, 2024.

[46] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A.-R. Sadeghi, “Lo-fat: Low-overhead control flow
attestation in hardware,” in DAC. ACM, 2017, p. 24.

[47] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-cfa: Minimal-
istic control-flow attestation using verified proofs of execution,” in
2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2021, pp. 641–646.

[48] Z. Sun, B. Feng, L. Lu, and S. Jha, “Oat: Attesting operation integrity
of embedded devices,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1433–1449.

[49] G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” in
2018 IEEE/ACM ICCAD, 2018, pp. 1–8.

[50] S. Zeitouni, G. Dessouky, O. Arias, D. Sullivan, A. Ibrahim, Y. Jin,
and A.-R. Sadeghi, “Atrium: Runtime attestation resilient under
memory attacks,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2017, pp. 384–391.

[51] F. Toffalini, E. Losiouk, A. Biondo, J. Zhou, and M. Conti,
“{ScaRR}: Scalable runtime remote attestation for complex systems,”
in 22nd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2019), 2019, pp. 121–134.

[52] Y. Zhang, X. Liu, C. Sun, D. Zeng, G. Tan, X. Kan, and S. Ma,
“Recfa: Resilient control-flow attestation,” in Annual Computer Se-
curity Applications Conference, 2021, pp. 311–322.

[53] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for em-
bedded systems software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, 2016, pp.
743–754.

[54] J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou, Y. T. Hou, and
N. Zhang, “ARI: Attestation of real-time mission execution integrity,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023,
pp. 2761–2778.

[55] G. Dessouky, S. Zeitouni, A. Ibrahim, L. Davi, and A.-R. Sadeghi,
“CHASE: A configurable hardware-assisted security extension for
real-time systems,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–8.

[56] T. Abera, R. Bahmani, F. Brasser, A. Ibrahim, A.-R. Sadeghi, and
M. Schunter, “Diat: Data integrity attestation for resilient collabora-
tion of autonomous systems.” in NDSS, 2019.

[57] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 16, no. 5,
pp. 1467–1471, 1994.

[58] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finoc-
chi, “A survey of symbolic execution techniques,” ACM Computing
Surveys (CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[59] A. Caulfield, L. Tyler, and I. De Oliveira Nunes, “SpecCFA
Prototype Repository,” 2024. [Online]. Available: https://github.com/
RIT-CHAOS-SEC/SpecCFA/

[60] Trusted Computing Group., “Trusted platform module (tpm),”
2017. [Online]. Available: http://www.trustedcomputinggroup.org/
work-groups/trusted-platform-module/

[61] Intel, “Intel Software Guard Extensions (Intel SGX).” [Online].
Available: https://software.intel.com/en-us/sgx

[62] M. Geden and K. Rasmussen, “Hardware-assisted remote runtime
attestation for critical embedded systems,” in 2019 17th International
Conference on Privacy, Security and Trust (PST). IEEE, 2019, pp.
1–10.

[63] J. S. Vitter, “Design and analysis of dynamic huffman codes,” Journal
of the ACM (JACM), vol. 34, no. 4, pp. 825–845, 1987.

[64] J. Obermaier and V. Immler, “The past, present, and future of physical
security enclosures: from battery-backed monitoring to puf-based
inherent security and beyond,” Journal of Hardware and Systems
Security, vol. 2, no. 4, pp. 289–296, 2018.

[65] ARM Security Technology - Building a Secure System using TrustZone
Technology, ARM Limited, 2009.

[66] Seeed-Studio, “Ultrasonic Ranger Github Repository,”
https://github.com/Seeed-Studio/LaunchPad Kit/tree/master/Grove
Modules/ultrasonic ranger, 2022.

[67] ——, “Temperature Sensor Github Repository,” https:
//github.com/Seeed-Studio/LaunchPad Kit/tree/master/Grove
Modules/temp humi sensor, 2022.

[68] Y. Tournade, “ArduinoPocketGeiger Github Repository,” https://
github.com/MonsieurV/ArduinoPocketGeiger, 2020.

[69] M. Vlasák, “arduino-joystick-mouse,” 2019. [Online].
Available: https://github.com/Krakenus/arduino-joystick-mouse/blob/
master/joystick mouse.ino

[70] M. Hart, “Tinygps++,” http://arduiniana.org/libraries/tinygpsplus/,
2014.

[71] Xilinx, “Vivado design suite user guide,” 2017.
[72] O. Girard, “openMSP430,” 2009.
[73] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,

“Hacl*: A verified modern cryptographic library,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 1789–1806.

[74] K. MacKay, “Github repository for Micro-ECC,” https://github.com/
kmackay/micro-ecc, 2022.

14

https://github.com/RIT-CHAOS-SEC/SpecCFA/
https://github.com/RIT-CHAOS-SEC/SpecCFA/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://software.intel.com/en-us/sgx
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/ultrasonic_ranger
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/Seeed-Studio/LaunchPad_Kit/tree/master/Grove_Modules/temp_humi_sensor
https://github.com/MonsieurV/ArduinoPocketGeiger
https://github.com/MonsieurV/ArduinoPocketGeiger
https://github.com/Krakenus/arduino-joystick-mouse/blob/master/joystick_mouse.ino
https://github.com/Krakenus/arduino-joystick-mouse/blob/master/joystick_mouse.ino
http://arduiniana.org/libraries/tinygpsplus/
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc


Appendix A.
Repeat Detect Module

Fig. 13 depicts the Repeat Detect module in more detail.
As discussed in Sec. 4.1, the Repeat Detect module receives
detectany indicating that a sub-path has been detected in
CFLog. The module also receives activeID and activeaddr
as an output from the MUX representing the ID of the
occurring sub-path and its address in CFLog. Repeat Detect
uses these signals to determine if a sub-path has repeated by
comparing the current speculation to the previous one. For
ease of representation, we depict this logic as the Repeat
Counter in Fig. 13. If a repeat is detected, the address
of the optimization lastaddr is determined, and a counter
containing the number of consecutive repeats (repeatctr)
is recorded. In addition, two signals are set (firstrepeat
and subseqrepeat), whether this represents the first time the
repeated sub-path occurred.

The final signals activeaddr, activeID, lastaddr, and
repeatctr are passed to a MUX using the detectactive ,
firstrepeat , and subseqrepeat signals as a selector. The MUX
determines the values of specen, specvalue , and specaddr
depending on if the detected sub-path is repeating. Upon
the first occurrence of a sub-path, activeID and activeaddr
are written to specvalue and specaddr. Then, if the sub-
path repeats, they are set to repeatctr and lastaddr instead.
In both cases, specen is set. Then, specen, specaddr, and
specvalue are sent as output to the Memory Interface.

A.1. Repeat Detect Hardware Specifications

Fig. 14 shows the additional hardware specifications
for detecting when a sub-path repeats in adjacent CFLog

locations. After a sub-path is detected and written to CFLog

for the first time, repeatctr = 2. At this moment, the internal
value lastaddr is set in order to save the previous value
of activeaddr, and lastID records the previous activeID.
These values and repeatctr are then used to detect when
the first (firstrepeat) or subsequent repeats (subseqrepeat)
of the sub-path occur.

To detect the first repeat, the hardware checks if the next
activeID is the same as lastID and if repeatctr = 2. If

Figure 13. Repeat Detect module internals

HW Specification: Select active block signals

activeID =


blockID0 , if detectactive0
...
blockIDn , else if detectactiven

(1)

activeaddr =


activeaddr0 , if detectactive0
...
activeaddrn , else if detectactiven

(2)

(detectactive0 ∨ ... ∨ detectactiven ) → detectany (3)

Definitions: Previous speculation address and ID

lastaddr =

{
activeaddr, if detectany ∧ (repeatctr = 2 )
lastaddr otherwise (4)

lastID =

{
activeID, if detectany ∧ (repeatctr = 2 )
lastID otherwise (5)

Definitions: Detect First and Subsequent Sub-Path Repeats

firstrepeat :=(repeatctr = 2 ) ∧ (activeID = lastID )

∧((lastaddr + 2 ) = activeaddr )
(6)

subseqrepeat :=(repeatctr > 2 ) ∧ (activeID = lastID )

∧((lastaddr + 2 ) = activeaddr )
(7)

repeat := detectany ∧ (firstrepeat ∨ subseqrepeat ) (8)

repeatctr =

{
2, if (detectany ∧ ¬repeat)
repeatctr + 1 else if detectany ∧ repeat

(9)

Figure 14. Hardware Spec: Repeat Detection

HW Specification: Output speculation values

specen = detectany ∨ firstrepeat ∨ subseqrepeat (10)

specvalue =

{
repeatctr , if firstrepeat ∨ subseqrepeat
activeID , else if detectany

(11)

specaddr =

 lastaddr + 2 , if firstrepeat
lastaddr , else if subseqrepeat
activeaddr , else if detectany

(12)

Figure 15. Hardware Spec.: Interface with BlockMem

the IDs match, it then checks if activeaddr and lastaddr are
adjacent by comparing lastaddr+2 to activeaddr. If all three
conditions are met, the first repeat has occurred. repeatctr
is then written to CFLog and incremented. To detect all
subsequent repeats, a similar process occurs. If lastID and
activeID are equal, lastaddr and activeaddr are adjacent,
and repeatctr > 2, a subsequent repeat has occurred.

Repeat Detect outputs specen, specaddr, and specvalue
to optimize CFLog. The hardware specifications for these
signals are shown in Fig. 15. specen is set as the logical
OR of the signals detectany, firstrepeat, and subseqrepeat
as any of these signals indicate a sub-path has been
detected. When any repeat is occurring (firstrepeat ∨
subseqrepeat), repeatctr is used to set specvalue. When no

15



repeat occurs, and detectany is set, then specvalue is set as
activeID. Similarly, specaddr depends on these three signals
(detectany, firstrepeat, subseqrepeat). When the first repeat
occurs, the counter must be logged to the address adjacent
to the first sub-path ID, which is determined by lastaddr+2.
On subsequent repeats, lastaddr contains the address of the
counter in CFLog and can be overwritten directly with the
new count. Finally, when there is no repeat but detectany
is set, the address stored in activeaddr is used.

Appendix B.
Additional Implementation Details

Platform differences effecting CFLog size: Compared
to MSP430, ARMv8 Cortex-M has a richer instruction
set. Because of this, some control flows can be optimized
to make execution more efficient. For example, simple if
statements and logical operations can be replaced with the
execution of conditional instructions, removing certain con-
trol flow transfers. We observe the effect of this difference in
programs like Mouse and GPS. Several components of these
programs, such as integer division and logical operations
(such as setting a variable to the result of a comparison),
are optimized in ARM, reducing the number of transfers.

In addition, the STM32L552ZE MCU is equipped with
an FPU, allowing floating point operations to require little
to no control flow transfers. In MSP430, divisions require
several branch instructions, and logical operations require
control flow transfers. Hence, the CFLog reductions and
selected sub-paths vary because some recurrent sub-paths
in the control flow path of MSP430 binaries do not exist in
ARMv8 binaries.

Authenticating and Transmitting CFLog-s: Both im-
plementations use UART-to-USB as a communication in-
terface with a baud rate of 38400. The two use different
cryptographic functions to authenticate CFLog-s. The un-
derlying CFA RoT [2] for the TEE-based prototype uses
a digital signature. It is implemented with SHA256 from
HACL* [73] for hashing and Micro-ECC [74] for the Ellip-
tic Curve Digital Signature Algorithm (ECDSA). It operates
on an SECP256R1 curve with a 256 bits private key to
generate a 64 Byte signature. For the custom hardware-based
design, the underlying CFA RoT[1] uses SHA256-HMAC
from HACL* [73] to produce a 32 Byte MAC. Because of
these differences, cryptographic operations consume most of
the protocol time on the TEE-based version (due to the use
of an asymmetric primitive) whereas transmission of data
is the most time-consuming on the custom hardware-based
version, as depicted in Fig 12.

16


	Introduction
	Background & Related Work
	Remote Attestation (RA)
	Control Flow Attestation/Auditing (CFA)

	SpecCFA at a High-Level
	System Model & Scope
	Adversary (Adv) Model

	SpecCFA with Custom Hardware
	Memory Organization & Sub-Modules
	Sub-Path Detection Finite State Machine
	Hardware Specification Details

	TEE-based SpecCFA
	Security Analysis
	Selecting Sub-Path Speculations
	Program Analysis
	Automated CFLog Analysis
	Manual Inspection

	Prototypes and Evaluation
	SpecCFA HW/Run-time Overheads
	Storage & Communication Savings
	Path Selection Policy Comparison
	End-to-End Latency

	Limitations & Potential Improvements
	Conclusion
	References
	Appendix A: Repeat Detect Module
	Repeat Detect Hardware Specifications

	Appendix B: Additional Implementation Details

